Правило правой руки для прямого проводника с током

Содержание
  1. Правило буравчика кратко и понятно
  2. Что такое магнитное поле
  3. Постоянные магниты
  4. Правило буравчика для магнитных полей
  5. Правило правой руки
  6. Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки
  7. Что такое линии магнитной индукции
  8. Направление линий магнитной индукции внутри постоянного магнита
  9. Определение направления вектора магнитной индукции с помощью правила буравчика
  10. Правило буравчика
  11. Общее (главное) правило
  12. Для произведения двух векторов
  13. Для базисов
  14. Мнемонические правила для отдельных случаев
  15. Для механического вращения скорости
  16. Для угловой скорости
  17. Для момента импульса
  18. Для момента сил
  19. Магнитостатика и электродинамика
  20. Магнитная индукция
  21. Уравнения Максвелла
  22. Правила левой руки
  23. Объяснение названия
  24. Связь магнитного поля с правилами
  25. Особенности соленоида
  26. Как узнать направление тока
  27. Применение ППР
  28. Правило буравчика и правой, левой руки: формула, в чем измеряется сила тока и ампера
  29. Применение правила буравчика
  30. Правило левой руки
  31. Сила Ампера: варианты расчета
  32. Сила тока
  33. Правило буравчика простым языком
  34. Определение
  35. Главное правило
  36. Специальные правила
  37. Для векторного произведения
  38. По циферблату часов
  39. Правила правой руки, для произведения векторов
  40. Для базисов
  41. Интерпретация для точечного заряда
  42. Полезные сведения и советы
  43. по теме

Правило буравчика кратко и понятно

Правило правой руки для прямого проводника с током

Далеко не все явления в нашей жизни мы можем увидеть, хотя используем их постоянно. Например, электрический ток и магнитное поле. Если к току, как к явлению, мы более-менее привыкли, с магнитными полями не очень легко разобраться. О том, что это такое и как правило буравчика позволяет определить его направление и поговорим.

Что такое магнитное поле

Все, наверное, знают что такое постоянные магниты — они «липнут» к железу и некоторым другим материалам. Если приблизить два магнита, то они будут притягиваться или отталкиваться — в зависимости от того, как мы их повернем друг относительно друга.

Почему и за счет чего так происходит? За счет того, что вокруг магнитов создается магнитное поле. Оно возникает при движении заряженных частиц. Например, вокруг провода, по которому протекает электрический ток, есть магнитное поле. Оно слабое, но оно есть.

Магнитное поле нельзя увидеть, но можно ощутить

Постоянные магниты

Как же тогда с магнитами? Откуда в них магнитное поле, ведь в них нет направленного движения частиц? Все просто. В них магнитное поле создается зарядами частиц. Как известно, любой материал состоит из положительно и отрицательно заряженных частиц.

В некоторых материалах частицы можно расположить так, чтобы положительные были сконцентрированы с одной стороны, отрицательные — с другой. Эти «две стороны» называют полюсами магнита.

Отрицательный — северный, обозначается латинской буквой N и закрашивается обычно синим цветом, положительный называют «южный» и обозначается S, закрашивается в красный цвет.

Постоянные магниты и их виды

Причем, стоит помнить, что однополюсных магнитов не бывает. Всегда есть два полюса. Если есть у вас большой магнит, его можно распилить пополам. И вы получите два магнита меньшего размера с двумя полюсами. Если распилите их — получите еще более мелкие двухполюсные магнитики.

Постоянные магниты можно сделать далеко не из всех материалов. Для этих целей подходят всего три вещества: железо (Fe), никель (Ni) и кобальт (Co). Если их выдержать в магнитном поле, частицы «рассортируются» по полюсам, материал станет магнитом. Но не все будут долго сохранять эти свойства.

По способности удерживать магнитные свойства, материалы разделают на магнитомягкие и магнитотвердые материалы. Первые быстро намагничиваются, но и быстро теряют свои свойства. К таким относится железо (не обработанное). Магнитотвердый материал — например, сталь — в магнитном поле надо выдерживать долго.

Зато после «выдержки» он становится магнитом на значительный промежуток времени. Можете поэкспериментировать со стальными скрепками.

Правило буравчика для магнитных полей

Речь шла о постоянных магнитах. У них все всегда понятно: где какой полюс и куда направлены линии магнитного поля — от северного полюса к южному. Но магнитное поле возникает и вокруг проводников, по которым течет ток.

Просто оно слабое, так что даже если поднести два участка, по которым течет ток, особого притяжения или отталкивания мы не ощутим. Чтобы создать сильное электромагнитное поле, проводник накручивают вокруг какого-то сердечника. Это изделие называют соленоидом. Когда по нему течет ток, создается ощутимое магнитное поле.

Но как направлены линии магнитного поля в электромагнитах? Где у них северный, где южный полюс? Вот это и выясняют с помощью правила буравчика.

Буравчик можно себе представить как обычный штопор с ручкой-перекладиной и витками, накрученными вправо. Чтобы закручивать такой штопор, ручку надо вращать вправо — по часовой стрелке. При этом острие штопора/буравчика продвигается вниз. Чтобы выкручивать его, надо рукоятку вращать влево — против часовой стрелки. Острие при этом движется вверх.

Правило буравчика для магнитного поля

С движением острия буравчика и направлением вращения рукоятки и связано определение направление магнитного поля. Вот как звучит правило буравчика (еще называют правило винта):

Если направление движения острия буравчика (винта) совпадает с направлением движения тока, то движение рукоятки буравчика укажет направление линий магнитного поля.

С ровными проводниками все просто. Представляете, вкручивать или выкручивать надо буравчик, получаете направление силовых линий.

Если по условиям задачи есть только направление линий магнитного поля, при помощи правила буравчика можно установить направление тока. Для этого мысленно представляем, что ручка штопора крутится в указанном направлении.

В зависимости от этого, определяем куда движется острие, а, значит, и куда течет ток.

Правило правой руки

Не всегда и не у всех с буравчиком «складывается». Некоторым людям сложно представить, как будет двигаться винт. В этом случае можно попробовать одну из его вариаций: правило правой руки. Для кого-то оно проще и наглядней. Вот как определять направление магнитного поля по правилу правой руки.

Если отогнуть большой палец правой руки и направить его в сторону течения тока, согнутые вокруг проводника пальцы, покажут направление движения магнитного поля.

Правило буравчика в другой интерпретации: правой руки для проводника (иллюстрация)

Внимание! Во время применения правила прикасаться к проводнику не надо. Все операции надо проделывать в собственном воображении, или на солидном расстоянии от реального проводника тока.

Правило правой руки для соленоида

Чем хорош этот вариант, так это тем что его легко применить и для соленоида. Направляем большой палец в том направлении, куда течет ток, и по остальным определяем направление магнитного поля. Все просто. С буравчиком так не получится.

По правилу правой руки определять также можно направление тока по имеющимся линиям магнитного поля. Пальцы располагаем вдоль этих линий, повернув их по движению. Отогнутый на 90° большой палец покажет направление тока.

Источник: https://elektroznatok.ru/info/teoriya/pravilo-buravchika

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Правило правой руки для прямого проводника с током

Особая форма существования материи – магнитное поле Земли способствовало зарождению и сохранению жизни. Осколки этого поля, куски руды, притягивающие железо, привели электричество на службу человечеству. Без электроэнергии выжить будет немыслимо.

Что такое линии магнитной индукции

Магнитное поле определено напряженностью в каждой точке его пространства. Кривые, объединяющие точки поля с равными по модулю напряженностями называются линиями магнитной индукции.

Напряжённость магнитного поля в конкретной точке — силовая характеристика и для ее оценки применяется вектор магнитного поля В.

Его направление в конкретной точке на линии магнитной индукции происходит по касательной к ней.

В случае, если на точку в пространстве влияет несколько магнитных полей, то напряженность определяется суммированием векторов магнитной индукции каждого действующего магнитного поля. При этом  напряженность в конкретной точке суммируется по модулю, а вектор магнитной индукции определяется как сумма векторов всех магнитных полей.

Несмотря на то, что линии магнитной индукции невидимые, они обладают определенными свойствами:

  • Принято считать, что силовые линии магнитного поля выходят на полюсе (N), а возвращаются с (S).
  • Направление вектора магнитной индукции происходит по касательной к линии.
  • Несмотря на сложную форму, кривые не пересекаются и обязательно замыкаются.
  • Магнитное поле внутри магнита однородно и плотность линий максимальна.
  • Через точку поля проходит только одна линия магнитной индукции.

Направление линий магнитной индукции внутри постоянного магнита

Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.

Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт.

  В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт.

Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.

Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован.  Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.

Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним.

Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения.

Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.

Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.

Определение направления вектора магнитной индукции с помощью правила буравчика

В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.

Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:

  • Магнитной индукции;
  • Величины и направления индукционного тока;
  • Угловой скорости.

Такое понимание было сформулировано в правиле буравчика.

Совместив поступательное движение правостороннего буравчика с направлением тока в проводнике получаем направление линий магнитного поля, на которое указывает вращение рукоятки.

Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.

Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.

Правило буравчика

Правило правой руки для прямого проводника с током

Для корректной оценки некоторых процессов учитывают направление силовых линий, полярность, угловую скорость. При создании запорного устройства на основе соленоида, например, нужно правильно определить, в какую сторону будет перемещаться сердечник после подключения источника тока. Правило буравчика поможет решать подобные задачи быстро и точно, без сложных вычислений.

Специальные правила упрощают определение параметров электромагнитного поля

Общее (главное) правило

Рассматриваемая методика применима не только для решения электротехнических задач. Общие принципы справедливы для многих процессов, которые описывают с применением векторных обозначений. Эта форма позволяет, кроме амплитуды, оперировать с направлением силы. В определенной ситуации результирующее воздействие определяется умножением соответствующих векторов.

Декартова система координат

На практике чаще используют первый пример на картинке – правый (положительный) базис. В соответствии с базовым определением подразумевается совмещенное положение векторов. В этом варианте кратчайший поворот от первого (i) ко второму (j) выполняется против направления движения стрелок на циферблате чатов.

Для произведения двух векторов

Удобный для практического применения закон буравчика создан с учетом типовых технических решений. Шурупы и другие крепежные изделия, как правило, изготавливают с аналогичной резьбой (правой). Это соответствует физиологии человека, позволяет развивать большие усилия естественным движением кисти руки.

«Оружейное» мнемоническое правило

Запомнить метод буравчика можно с помощью показанной на рисунке конфигурации пальцев, которой изображают «пистолет». Для устойчивой ассоциации с определенными физическими величинами нужно вспомнить англоязычную аббревиатуру американских спецслужб (ФБР – I). При таком расположении пальцы будут показывать следующие вектора:

  • большой – ток в проводнике (I);
  • указательный – магнитную индукцию (B);
  • средний – силовое воздействие (F).

Для базисов

Аналогичным образом запоминают ориентацию векторных составляющих при рассмотрении базисов. Также применяют мнемоническое правило на основе часов. В таком варианте два вектора ассоциируются со стрелками часов. Результат умножения направлен в глубину механизма либо к наблюдателю, соответственно.

Мнемонические правила для отдельных случаев

Представленные технологии не обязательны для использования при решении практических задач. Правило правой руки в физике используют в качестве вспомогательного инструмента.

Вычисления делают с применением стандартных методик векторной алгебры. Однако достаточно часто требуется ускоренное уточнение направления магнитных линий либо иного параметра.

Не всегда нужны сведения о силе токе в амперах, другие точные данные. В подобных ситуациях пригодятся правила буравчика по физике.

Для механического вращения скорости

Удобные и понятные правила можно применить в разных сферах деятельности.

Для угловой скорости

Для рассмотрения механических систем часто приходится оперировать с выражениями угловой скорости (w) и перемещения (v). По движению буравчика определяют направление вектора w.

Для момента импульса

Этот же принцип используют для уточнения параметров момента импульса (L), который зависит от общей массы и ее распределения в исследуемом объекте. Однако выяснить направление вектора можно с применением простого правила буравчика.

Для момента сил

По классическому определению вращающий момент (M) равен произведению векторов силы (F) и радиуса (r), который соединяет точки оси вращения и места приложения соответствующего воздействия.

Для расчетов применяют сложные вычисления с использованием интегралов и угловых проекций. Движение тела будет соответствовать перемещению буравчика.

Подразумевается вращение рукоятки его в сторону соответствующего момента сил.

Магнитостатика и электродинамика

Земля создает мощное поле, защищающее людей от солнечной радиации. Под его воздействием стрелка компаса перемещается в определенное положение. Ток, проходящий через проводник, создает силовое воздействие для вращения двигателя.

Обратный алгоритм действий применяют для генерации электроэнергии. Отмеченные процессы можно сформулировать и описать комплексом уравнений.

Правило правой руки позволяет определить отдельные параметры в электродинамике без лишних сложностей.

Магнитная индукция

Рассматриваемое явление открыто в начале 19 века. Основные зависимости физических величин определены законом Фарадея:

E = – dФ/dt,

где:

  • Е – электродвижущая сила;
  • Ф – магнитный поток, который создается вектором индукции;
  • t – контрольный временной интервал.

Позднее были определена зависимость ЭДС не только от формы силы внешнего воздействия. Ток появляется и в проводнике, который движется в стабильном магнитном поле. Био-Савар установил векторную зависимость экспериментально. Позднее Лаплас сделал общее определение и уточнил принципы вычислений для перемещающего единичного заряда. Эти постулаты стали основой современной магнитостатики.

В приведенном выражении «минус» перед второй частью объясняется условием противоположной направленности линий соответствующего магнитного потока (закон Лоренца) току в проводнике.

Для упрощенного рассмотрения методики правило буравчика кратко будет обозначаться далее в тексте аббревиатурой «ПБ». Правило левой руки или правой – «ПЛР» или «ППР», соответственно. Иные сокращения для обозначения направлений:

  • перемещения винта (буравчика) – НДБ;
  • вращения ручки – НВР;
  • отставленного на прямой угол большого пальца – НБП;
  • сложенных других пальцев – НСП.

Условные сокращения

МетодСоответствие
ПБ
НДБтоку в контрольном проводнике
НВРвектору (В), созданному пропускаемым током
ППР
НБПтоку
НСПсиловым линиям

Для тока в проводнике, движущемся в магнитном поле

Метод определенияСоответствие
ППР
НБПдвижению контрольного провода
НСП (прямая ладонь, силовые линии входят перпендикулярно)индукционного тока

Уравнения Максвелла

В этом случае применяют возможность выражения операции ротора через произведение двух векторов. Для простоты понимания можно представить вращающуюся жидкую среду обладающей определенной угловой скоростью.

Методы определения базовых параметров

МетодСоответствие
ПБ
НДБвекторному выражению ротора
НВРзавихрениям поля
ППР
НБПвектору ротора (потоку, который проходит через контрольный контур)
НСПзавихрениям (индуцируемой электродвижущей силе)

Правила левой руки

Вектор магнитной индукции: формула

По аналогичным принципам заполнены представленные в следующих разделах таблицы.

Первое правило

МетодСоответствие
ПЛР
НБПдействующей на проводник силе
НСП (прямая ладонь)току в контрольном проводе

Пояснение методики при размещении провода в постоянном магнитном поле

Для следующего варианта изменены исходные условия:

  • постоянный магнит неподвижен;
  • заряд перемещается с пересечением силовых линий.

Второе правило

Метод определенияСоответствие
ПЛР
НБПдействующей на заряд силе
НСП (прямая ладонь)движению частицы с положительным зарядом

Объяснение названия

Явление электромагнитной индукции

После изучения общих принципов и формулировок пользоваться рассмотренными правилами несложно. Ниже подробно представлены методики, которые применяют при работе с электротехническими схемами.

В частности, с их помощью определяют направление тока. При необходимости уточняют параметры образованного поля. Аналогичные технологии можно использовать в механике для оценки угловой скорости и других рабочих параметров системы. Изменяются только отдельные компоненты формул.

Алгоритмы применения технологий остаются неизменными.

Связь магнитного поля с правилами

В этой части публикации рассматриваются электрические величины. Поэтому следует напомнить о направлении течения тока в проводке – от «плюса» источника питания к «минусу». От контрольной точки с большим потенциалом (ϕ1=10 B) – к месту измерения с относительно меньшим (ϕ1= 5 B).

Кольцевая проводящая конструкция

На иллюстрации представлена кольцевая конструкция. Для уточнения характеристик системы в соответствии с базовыми правилами винт вкручивают с учетом реального направления силовых линий. Вращение рукоятки соответствует току в проводе, подключенному к источнику питания.

В этом примере необходимо выяснить направление вектора (В) магнитной индукции и соответствующую конфигурацию линий силового поля. Для проверки сжимают руку в кулак. Один палец ставят вертикально – известный жест «Класс!». Он будет соответствовать движению тока. Вектор, обозначающий магнитное поле, совпадает с положением четырех сжатых пальцев.

Важно! Нельзя прикасаться к проводнику под напряжением при проведении эксперимента, чтобы исключить поражение электротоком.

Для наглядности опыт можно повторить с железными опилками. Гранулы рассыпают на плоской поверхности.

Допустимо использование листа картона, другого материала с нейтральными по отношению к электромагнитным полям свойствами. В центре перпендикулярно устанавливают провод.

После подключения к источнику тока можно наблюдать распределение полос, которое соответствует линиям созданного силового поля.

К сведению. По рассмотренной схеме определяют полюса катушки, подключенной к источнику питания. Пользуются стандартным алгоритмом ППР. Отогнутый большой палец будет показывать на северный полюс.

Особенности соленоида

Электромагнитное поле создает катушка, подключенная к источнику питания. На примере с кольцевой конструкцией понятно неравномерное распределение силовых линий. Это затрудняет создание рабочих схем с заданными расчетными параметрами.

Отмеченный недостаток устраняют с применением соленоида. При достаточно большом количестве витков в центральной части образуется равномерное поле с параллельными силовыми линиями.

«Краевыми» искажениями, если длина значительно больше, по сравнению с диаметром, можно пренебречь. Фактически эта конструкция выполняет функции постоянного магнита.

Существенное преимущество – возможность создания изделий с определенными расчетом (изменяемыми) рабочими параметрами.

Катушка и кольцевая конструкция

Для уточнения параметров поля берут катушку, как показано на картинке. Сжатые пальцы направляют с учетом подключенного электропитания. Обеспечивают совпадение с током. Большой палец отгибают в сторону. Он будет показывать сторону, в которую направлен вектор силовых линий магнитной индукции.

К сведению. Аналогичным образом применяют правило буравчика. По этой методике винт вкручивают от «+» подключенной аккумуляторной батареи к «минусовой» клемме.

Как узнать направление тока

По изученным правилам действуют для уточнения этого параметра. Движение винта должно соответствовать вектору силовых линий магнитной индукции. По вращению рукоятки винта узнают направление тока.

Применение ППР

При пользовании рассмотренными методиками следует исключить возможные ошибки по причине подобных названий. Правило левой руки используют для проверки сил, которые воздействуют на изделие из проводящего материала при размещении образца в магнитном поле.

Сжатые пальцы располагают в соответствии с током. Силовые линии должны входить в открытую ладонь. Отогнутый на угол 90° большой палец – направление вектора силового воздействия.

Для расчета силы Ампера (Fа) применяют следующую формулу:

Fа = B*J*Lsinα.

Такой же метод пригоден для определения стороны перемещения отдельных заряженных частиц или потока электронов. Сжатые пальцы открытой ладони направляют по их движению. Большой – покажет силовое воздействие. При необходимости вместо правилa левой руки можно применить рассмотренную выше технологию с «пистолетом» I.

Источник: https://amperof.ru/teoriya/pravilo-buravchika.html

Правило буравчика и правой, левой руки: формула, в чем измеряется сила тока и ампера

Правило правой руки для прямого проводника с током

Для того, чтобы узнать траекторию вращения магнитного поля, находящегося у прямого проводника с током, используется правило буравчика (штопора). В литературе также оно известно, как правило правой руки. В научной среде выделяют и правило левой руки. …

Применение правила буравчика

Данное правило гласит: если при движении вперед этого устройства траектория движения тока в проводнике совпадает с ним, то траектория вращения основания прибора комплементарна траектории движения магнитного контура.

Чтобы определить траекторию вращения магнитного контура на представленном графическом изображении нужно знать несколько особенностей.

Часто в задачах по физике нужно, наоборот, определить траекторию движения тока. Чтобы это сделать, дается направление вращения кругов магнитного поля.

Ручка буравчика начинается вращаться в сторону, указанную в условиях.

Если буравчик движется в поступательном направлении, значит, ток направлен в сторону движения, если же он направлен в обратную, то и ток движется соответственно.

Для определения траектории движения тока в случае, представленном на втором рисунке, тоже можно воспользоваться правилом штопора. Для этого необходимо вращать ручку буравчика в сторону, указанную на изображении контура магнитного поля. Если он будет двигаться поступательно, то ток будет двигаться в сторону от наблюдателя, если же, наоборот, только к наблюдателю.

Важно! Если указана траектория движения потока, то определить траекторию вращения линии магнитного контура можно по вращению ручки буравчика.

Оно обозначается при помощи точки или крестика. Точка означает движение в сторону наблюдателя, крестик означает обратное. Легко запомнить этот случай, используя так называемое правило «стрелы», если острие «смотрит», а в лицо, то траектория движения тока в сторону наблюдателя, если же в лицо «смотрит хвост стрелы», то она двигается от наблюдателя.

Как правило буравчика, так и правило правой руки, достаточно легко применить на практике.

Для этого нужно расположить кисть соответствующей руки таким образом, чтобы в лицевую сторону направлялся силовой контур магнитного поля, после чего большой палец, отведенный перпендикулярно, необходимо направить сторону движения тока, соответственно, остальные выпрямленные пальцы укажут на траекторию магнитного контура.

Различают исключительные случаи использования правила правой руки для вычисления:

  • уравнения Максвелла,
  • момента силы,
  • угловой скорости,
  • момента импульса,
  • магнитной индукции,
  • тока в проводе, движущегося через магнитное поле.

Правило левой руки

Правилом этой руки возможно вычислить направленность силы воздействия магнитного контура на заряженные элементарные составляющие атома плюсовой и минусовой полярности.

Возможно определить и направление тока, если доступна информация о траекториях вращения магнитного контура и действующей на проводник энергии. Определяется и направление магнитного контура в случае известности траектории движения силы и тока. Ну и можно выяснить знак заряда нестатичной частицы.

Это правило звучит следующим образом: расположив лицевую часть кисти соответствующей руки, чтобы воображаемый контур магнитного поля направлялись в нее под прямым углом, а пальцы, за исключением большого, направив в сторону движения тока, можно определить траекторию силы, воздействующая на этот провод при помощи перпендикулярно отодвинутого большого пальца. Сила, оказывающая воздействие на проводник, носит имя Мари Ампера, обнаружившего ее в 1820 году.

Сила Ампера: варианты расчета

Прежде чем сформулировать данную величину, необходимо разобраться, что такое понятие сила в физике. Ей называется величина в физике, которая является мерой воздействия всех окружающих тел на рассматриваемый объект. Обычно любую силу обозначают английской буквой F, от латинского fortis, что означает сильный.

Рассчитывается элементарная сила Ампера по формуле:

где, dl – часть длины проводника, B –индукция магнитного контура, I – сила тока.

Рассчитывается также сила Ампера по формуле:

где, J – направление плотности тока, dv– элемент объема проводника.

Формулировка расчета модуля силы Ампера, согласно литературе, звучит так: данный показатель напрямую зависит от силы тока, протяженности проводника, синуса, образуемого между этим вектором и самим проводником угла, и величины значения вектора магнитного контура в модуле. Она и носит название модуля силы Ампера. Формула данного закона математически строится так:

где, B – модуль индукции магнитного контура, I – сила тока, l – длина проводника, α – образуемый угол. Максимальное значение будет при перпендикулярном их пересечении.

Показатель измеряется в ньютонах (условное обозначение – Н) или

. Он является векторной величиной и зависит от вектора индукции и тока.

Существуют и другие формулы для расчета силы Ампера. Но на практике они достаточно редко востребованы и тяжелы для понимания.

Сила тока

Иногда чтобы рассчитать закон Ампера, для начала нужно вычислить силу тока. Существуют несколько формул расчета данной величины. Для расчета ее величины используют:

  • закон Ома для полного участка цепи и ее части,
  • отношение напряжения и суммы сопротивлений,
  • отношение мощности и напряжения.

Самым популярным является отношение количество заряда прошедшего за единицу времени через определенную поверхность к размеру этого интервала. Графически формула выглядит следующим образом:

Чтобы найти этот показатель можно пользоваться законом Ома для участка цепи. Он гласит следующее: величина этого показателя равна отношению приложенного напряжения к сопротивлению на измеряемым участке цепи. Записывается формула этого закона следующим образом:

Определить ее также можно, применив формулу закон Ома для полной цепи. Звучит он так: эта величина является отношением приложенного напряжения в цепи и суммы внутреннего сопротивления источника питания и всего сопротивления в цепи. Формула выглядит так:

Рассчитать данную величину можно, в случае если известны мощность и напряжение.

Важно! Применение каждой конкретной формулы зависит от имеющихся в распоряжении данных.

Согласно утвержденной МСЕ, измеряется сила тока в амперах, и обозначается А (в честь ученого, открывшего ее). Но это не единственный способ обозначения данной величины. Дополнительно измеряется сила тока в Кл/с.

Изучая в общеобразовательных учреждениях данный материал, ученики быстро забывают, как применять правила левой и правой руки, и для чего они вообще нужны. Также часто они не помнят в чём измеряют указанные величины. Ознакомившись с рассмотренным выше материалом, не должно возникнуть трудностей с применением рассмотренных правил и законов на практике.

Правило буравчика

 Правило правой руки

Источник: https://tvercult.ru/nauka/v-chem-izmeryaetsya-sila-toka-pravilo-buravchika-i-pravoy-ruki

Правило буравчика простым языком

Правило правой руки для прямого проводника с током

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета).

Условный штопор направлен своим острым концом по вдоль линии по направлению тока.

Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление впространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотяориентация аксиального вектора является условной, она важна для расчётов: придерживаясьпринятого алгоритма выбора, легче производить вычисления, без риска перепутатьзнаки. 

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца.

Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма.

    Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы.

Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

по теме

Источник: https://www.asutpp.ru/pravilo-buravchika-prostym-yazykom.html

Юрист расскажет
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: